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Analyzing Functions
Implicit Functions and Implicit Differentiation

In mathematics, an implicit function is a generalization of the concept of a function  in which the dependent variable, say, 
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 has not been given "explicitly" in terms of the independent, say, 
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 To give a function explicitly is to be able to express it as 
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By contrast, the function is implicit if the value of  
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is obtained from 
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by solving an equation of the form 
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	Definition of an Implicit Function

	Consider the equation
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is an implicit function of
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An implicit function such as 
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can be a useful way to express a functional relationship that may be too complicated, inconvenient or even impossible to solve for 
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 in terms of 
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 For example, the implicit function 
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would be impossible to solve for 
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 in terms of 
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 In another situation, the equation 
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may fail to define a function at all and would express a multi-valued function. For example, the equations 
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, called the Cayley’s Sextic, (see Figure 1) and 
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 called the Tricuspoid (see Figure 2) , express such multi-valued functions, that would be too difficult, if not impossible, to solve for 
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 in terms of 
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	[image: image27.png]Cayley's Sextic




	[image: image28.png]Tricuspoid






                                                                       Figure 1                                               Figure 2

In spite of the difficulties in expressing an implicit function explicitly, it is relatively easy to determine its derivative 
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 As an example, determine 
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In determining 
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is a function of
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”. To emphasize this point, let us suppose that there exists a function 
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That is,
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Then, we wish to find 
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 Differentiating both sides with respect to 
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Exercises: Find 
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2. 
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                                                       Rate of Change
The classic example of a rate of change is that of velocity in rectilinear motion. Consider some object whose motion is on the real line and whose position
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at any time 
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from the origin is given by the function 
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called the equation of motion. We are all familiar with the concept of an average velocity in which we compare the change in position 
[image: image48.wmf]s

D

with the corresponding change in time 
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by dividing the former by the latter. Thus, if we consider the motion of our object during an interval of time 
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, we obtain the following definitions
:
	Average Velocity 
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	The average velocity 
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From this average, we obtain the concept of an instantaneous velocity at 
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by taking the limit of this average as 
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	Instantaneous Velocity 
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	The instantaneous velocity 
[image: image65.wmf]v

 at 
[image: image66.wmf]t



 EMBED Equation.3  [image: image67.wmf]def

º



 EMBED Equation.3  [image: image68.wmf](

)

(

)

Þ

-

D

+

=

D

t

f

t

t

f

s

 


[image: image69.wmf](

)

(

)

(

)

,

lim

lim

lim

0

0

0

t

t

f

t

t

f

t

s

v

t

f

dt

ds

s

v

t

t

t

D

-

D

+

=

D

D

=

=

¢

=

=

=

®

D

®

D

®

D

&

 provided this limit exists.


In the same way, we first define the average acceleration 
[image: image70.wmf]a
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[image: image71.wmf][

]

.

,

t

t

t

D

+

 Then, from this average, we obtain the concept of an instantaneous acceleration 
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 at 
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by taking the limit of this average as 
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	Instantaneous Acceleration 
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	Let
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	The instantaneous acceleration 
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In comparing two quantities, we do not have to restrict ourselves to position versus time. Realizing that we can compare any two quantities and taking our motivation from the concept of velocity, we can abstract this latter concept of velocity and, thus, derive the concept of an instantaneous rate of change of one quantity with respect to another quantity. Toward this end, consider two quantities 
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	Average Rate of Change 
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	Let
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	The average rate of change of the quantity 
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	Instantaneous Rate of Change of the Quantity
[image: image96.wmf]Q

 

	Let
[image: image97.wmf](

)

q

f

Q

=

on 
[image: image98.wmf][

]

b

a

,



	The instantaneous rate of change 
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 of  the quantity
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Examples:

1) The surface area 
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 of a sphere of radius 
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a) What is the rate of change
 of the surface of a sphere with respect to its radius 
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b) What is the rate of change when 
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2) For what value of 
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Answer:  We must have:
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Exercises:

1) Car A traveling west at 30 mph passes intersection P at noon while car B traveling south at 40 mph passes intersection P three hours later. How fast is the distance between the cars changing at 4:00 p.m.?
2) A spot light is on the ground 20 ft away from a wall and a 6 ft tall person is walking towards the wall (See Figure 3).  What is the rate of change of the height of the shadow with respect to the person’s distance from the spotlight at the instant the person is 8 feet from the wall?  
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Figure 3

3) A 15 foot ladder is resting against the wall (See Figure).  The bottom is initially 10 feet away from the wall and is being pushed towards the wall.  How fast is the top of the ladder moving up the wall with respect to the distance the bottom of the ladder is from the base of the wall after bottom has been pushed in three feet?

[image: image126.png]158





4) Water is being poured into a conical reservoir (Figure 4).  The reservoir has a radius of 5 feet across the top and a height of 14 feet.  At what rate is the volume 
[image: image127.wmf]V

of the water changing with respect to the radius 
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when the depth
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 is 7 feet? (Hint: By similar triangles 
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The volume 
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of water in the reservoir is given by 
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                                                                Figure 4
5) A 13-foot ladder is leaning against a vertical wall. If the bottom of the ladder is being pulled away from the wall at the rate of 2 feet per second, how fast is the area of the triangle formed by the wall, the ground and the ladder changing at the instant the bottom of the ladder is 12 feet from the wall?

6) Sand is pouring from a pipe at the rate of 16 cubic feet per second. If the falling sand forms a conical pile on the ground whose altitude 
[image: image134.wmf]h

 is always 
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 how fast is the altitude increasing when the pile is 
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feet high? Hint: See the Figure and use the fact that the volume
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7) An object moves along the
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axis. Its position at each 
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a. (2 pts) formula for the instantaneous velocity
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b. (2 pts) time(s) at which the object is changing direction, if ever.
c. (2 pts) formula for the instantaneous acceleration
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d. (6 pts) time interval(s), if any, during which the object is

	i) speeding up: ______________________________?
	ii) slowing down:_____________________________?




8) A large balloon is rising at the rate of 20 ft/sec. The balloon is 10 ft above the ground at the point in time that the back end of a car is directly below the bottom of the balloon (see first diagram).  The car is traveling at 40 ft/sec. What is the rate of change of the distance between the bottom of the balloon and the point on the ground directly below the back of the car one second after the back of the car is directly below the balloon (see second diagram)?  
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9) A circle starts out with a radius of 1 cm. (at time
[image: image149.wmf])
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If the area of the circle is increasing at the rate of 2 cm2 per second.
a. Find the rate of change of the radius with respect to time when the radius is 5 cm.  
b. What is the radius when 
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10) A sphere is increasing at a rate of 10 in3/sec. Find the radius of this sphere at the moment its surface area is increasing at the rate of 5 in2/sec.  
11) A fish is reeled in at a rate of 1 foot per second from a point 10 feet above the water.  At what rate is the angle between the fishing line and the water changing when there is a total of 25 feet of fishing line out?
Hint:  Let 
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the amount of fishing line out.


Let 
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12) The dimensions of the cross sections of an isosceles trapezoidal tank consists of  a base of 4 feet, a base of 10 feet, and a height of 12 feet, as shown in the figure below. It is also 100 feet wide (not shown). If the tank is filled by pumping water into it at a rate of 50 cubic feet per minute, how fast is the water level 
[image: image158.wmf]h

rising when it is 4 feet deep? Hint: The volume of the isosceles trapezoid of water is 
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13) Two people are 50 feet apart.  One of them starts walking north at a rate so that the angle shown in the diagram below is changing at a constant rate of 0.01 rad/min.  At what rate is distance between the two people changing when 
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Mean Value Theorem
	Inequality Preserving Limit Theorem

	Let 
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Proof: By contradiction. Assume 
[image: image170.wmf].

M

L

>

Let
[image: image171.wmf].

0

2

>

-

=

M

L

e

Then since 
[image: image172.wmf](

)

L

x

f

c

x

=

®

lim

 and 
[image: image173.wmf](

)

,

lim

M

x

g

c

x

=

®

there exists a 
[image: image174.wmf]p

<

>

d

d

with 

0

such that, for 
[image: image175.wmf],

0

d

<

-

<

c

x


a) 
[image: image176.wmf](

)

e

e

+

<

<

-

L

x

f

L


b) 
[image: image177.wmf](

)

(

)

x

g

x

f

<


c) 
[image: image178.wmf](

)

e

e

+

<

<

-

M

x

g

M


From a), b) and c), we obtain, for 
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This is a contradiction. (
Remark: This theorem is also true for one-sided limits.
	Definition of Some Important Points

	Let
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	Definition of a Critical Point

	Let
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be defined on an interval I that contains
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	Derivative of f
	Critical Points of f
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	Definition of an Absolute Extremum 

	Let f  be defined on an interval I  that contains c. Then
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	Definition of a Local Extremum

	Let  f  be defined on an interval I  that contains the interior point c. Then
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	Definition of an End Point Extremum

	Let  f  be defined on an interval I  that contains the end point c. Then
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	Critical Point Theorem (Fermat’s Theorem)

	Let
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be defined on an interval I.
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Proof: We may assume that c is neither an endpoint nor a singular point of
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Max-Min Existence Theorem (MMT): If f is continuous on the closed interval
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Remark: If either the ‘continuous’ requirement or the ‘closed interval’ requirement is dropped from the Max-Min Existence Theorem, then the theorem is false. For example,
	Continuity Dropped
	Closed Interval Dropped
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Example:
	Find the absolute maximum and minimum of
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	The Max-Min Theorem guarantees that f attains both a maximum and minimum on 
[image: image263.wmf][

]

2

,

2

-

 and the Critical Point Theorem guarantees that these extrema occur at critical points of  f.
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Exercises:
1) Let
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a) State the Max-Min Existence Theorem.
b) State the Critical Point Theorem.
c) Determine the critical points of 
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d) Determine the absolute maximum and minimum of
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Find the absolute maximum and minimum values of 
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in problems 3)-7).
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8) A model of the velocity of the space shuttle Discovery that deployed the Hubble Space Telescope in 1990 from liftoff at 
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Find the absolute maximum and minimum values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.
	Rolle’s Theorem (RT)

	Let
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Proof:  The theorem is trivial if 
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	Mean Value Theorem (MVT)
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1) Prove that the equation 
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3) If 
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Proof:  By the Mean Value Theorem, we have 
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Monotonicity
	Definition of a Strictly Monotonic Function

	Let f be defined on an interval I. Let  
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	f  is decreasing
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	 Monotonicity Theorem

	Let  f  be continuous on an interval I and differentiable on the interior of I.
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	Let  f , g  be continuous on an interval I and differentiable on the interior of I. Then
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	Speeding Up/Slowing Down Theorem
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Concavity
	Definition of Concavity

	Let f be differentiable on an open interval 
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	Concavity Theorem

	Let f be twice differentiable on an open interval I.
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	We use the Concavity Theorem to construct the Sign Chart of 
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	Definition of an Inflection Point

	Let f  be continuous at 
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	Critical Point Theorem for Inflection Points
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	Inflection Points Possibly Occur at
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	We use the Concavity Theorem to construct the Sign Chart of 
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	The Sign Chart tells us that an inflection point occurs at 
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	Find the Inflection Points of
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	The Sign Chart tells us that inflection points occur at
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	Inflection Points possibly occur at

	
	
[image: image590.wmf]4

-
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	The Sign Chart tells us that an inflection point occurs at 
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	Sign Preserving Limit Theorem
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Remark: This theorem is also true for one-sided limits.
	First Derivative Test Theorem

	Let 
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Exercises:
1. One end of a 27-foot ladder rests on the ground and the other end rests on the top of an 8-foot wall. As the bottom of the ladder is pushed along the ground toward the wall, the top extends beyond the wall. Find the maximum horizontal overhang of the top end (see Figure 6).
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Figure 6
2) Find the coordinates of
[image: image675.wmf]P

that maximizes the area of the rectangle shown in the figure below.

             [image: image676.emf]y

x

(4,0)

(0,3)

P


3) A rectangular piece of paper is 12 inches high and six inches wide. The lower right-hand corner is folded over so as to reach the leftmost edge of the paper (See figure.). Find the minimum length of the resulting crease. 
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4) Find the point 
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 on the graph of 
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by determining the following, where S denotes the function that is to be minimized.
e) 
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g) Critical points of 
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h) Test the Critical Points:                                                                                              

i) Answer:  the point 
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 that is nearest to the point 
[image: image687.wmf](

)

(

)

,

0

,

4

=


5) An advertising flyer is to contain 50 square inches of printed matter, with 2-inch margins at the top and bottom and 1-inch margins on each side. What dimensions for the flyer would use the least paper?

[image: image688.emf]x

y


6) An advertising flyer is to have an area of 50 square inches, in which the printed matter will have 2-inch margins at the top and bottom and 1-inch margins on each side. What dimensions for the flyer would maximize the printed matter?

7) The graph of 
[image: image689.wmf]3

2

2
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y

xy

x

is a "tilted" ellipse (See diagram.). Among all points (x, y) on this graph, find the largest and smallest values of y. Among all points (x, y) on this graph, find the largest and smallest values of x.
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8) Problem: There are infinitely many lines that pass through the point 
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 and form a right triangle with the coordinate axes (see the accompanying figure). In this problem, you are to justify the existence of that line through 
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that minimizes the area of the right triangle thus formed by answering the following questions:
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a) State the Max-Min Theorem (MMT).
b) Determine a function 
[image: image694.wmf](
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 that expresses the area of any of the right triangles formed by the axes and a line that passes through
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.
c) Determine the domain Dom
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)

.

A


d) Apply MMT to 
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9) A humidifier uses a rotating disk of radius 
[image: image698.wmf],

r

 which is partially submerged in water (shown in the lower region of the figure labeled WATER). The most evaporation occurs when the exposed wetted region (shown as the upper region of the figure labeled WETTED) is maximized. Show this happens when 
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 (the displacement from the center to the water) is equal to 
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.
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10) The function
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  and 
[image: image706.wmf]B.


11) What are the dimensions and the volume of the square pyramid that can be cut and folded from a square piece of cardboard 20 by 20 square inches as illustrated in Figure 4 so that its volume is a maximum?
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                                                                                                   Figure 4

12) What are the dimensions and the volume of the square pyramid that can be cut and folded from a square piece of cardboard 20 by 20 square inches as illustrated in Figure 5 so that its volume is a maximum?
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Figure 5

13) Which of the two constructed square pyramids from the above problems has the larger volume?
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	Definition of a Vertical Asymptote (V.A.)
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	Definition of an Oblique Asymptote (O.A.)
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Curve Sketching
	Sketch the graph of
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	Sketch the graph of
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Antiderivatives
Most mathematical operations have anti operations. In algebra, for example, the anti operation of multiplication is division, that of addition is subtraction, and that of raising to a power is taking a root. More commonly, these anti operations in algebra are called inverse operations. As you can see, each anti operation undoes the original operation. In the Calculus, the anti operation of differentiation (finding the derivative) is called antidifferentiation or integration. The result of an application of antidifferentiation   is called an antiderivative. For example, since 
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	Definition of an Antiderivative
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By a previous corollary to the Mean Value Theorem (MVT), if 
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	Definition of the General Antiderivative or Indefinite Integral

	Let
[image: image869.wmf]f

be continuous on an interval
[image: image870.wmf].

I

 

	We denote by 
[image: image871.wmf](

)

ò

dx

x

f

  the indefinite integral (general antiderivative) of 
[image: image872.wmf]f

on 
[image: image873.wmf].

I

Then, if 
[image: image874.wmf]C

is an arbitrary constant, called the constant of integration,

	
[image: image875.wmf](

)

(

)

ò

+

=

C

x

F

dx

x

f

 
[image: image876.wmf]def

º

  if 
[image: image877.wmf]f

F

=

¢

on 
[image: image878.wmf].

I




See Figure 7 for a graphic description of the relationship between integration and differentiation.
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Figure 7
Stated in another way,
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Linearity of the Indefinite Integral
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	Definition of the Differential

	Let
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Let 
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 Using the Differential, we may write
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Example:
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Differential Equations
Def: A differential equation is an equation involving the independent variable x, the dependent variable y and the latter’s derivatives expressed as 
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 Our goal is to solve such an equation; that is, to find a function 
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such that it and its various derivatives satisfy this equation. We will study a type of differential equation called a first order separable differential equation. This is the type in which only the variables
[image: image912.wmf]y

y

x

¢

 

and

 

,

appear and in which the expressions involving the variable x can be separated to one side of the equal sign and the expressions involving the variable y can be separated to other side of the equal sign. This separation is accomplished most easily by using differentials.

Examples:
(a) Find the xy-equation of the curve through 
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 What is C? This latter equation implies, 


using our initial condition, that 
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Answer: 
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(b) Find 
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Solve: 
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What is C?  Then, as before, 
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Thus, 
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Answer: 
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(c) Find the equation of motion of an object moving vertically near the surface of Planet X with initial velocity 
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 from the surface. Planet X has an acceleration due to gravity of
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Solve:
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 What is
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 What is
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Then, as before, 
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Answer: 
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If the object is dropped, then 
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If the object is on the surface of Planet X, then 
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If Planet X is the Earth, then 
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Remark: To every differentiation rule there corresponds a differential rule. For example, to the product rule there corresponds the differential rule 
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� We must allow both � EMBED Equation.3  ���and � EMBED Equation.3  ���when considering averages and limits. However, to save space we will usually only illustrate the case in which� EMBED Equation.3  ���.


� We will frequently use the phrase “rate of change” without modifier to mean “instantantaneous rate of change”.


� Similar proof if� EMBED Equation.3  ���has a local minimum at� EMBED Equation.3  ���.


� Similar proof if� EMBED Equation.3  ���
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